Towards Homotopical Algebraic Quantum Field Theory

Alexander Schenkel

School of Mathematical Sciences, University of Nottingham

1. Explain why AQFT is insufficient to describe gauge theories
Outline

1. Explain why

 AQFT is insufficient to describe gauge theories

2. Present ideas/observations indicating that the key to resolve this problem is

 homotopical AQFT := homotopical algebra + AQFT
1. Explain why

AQFT is insufficient to describe gauge theories

2. Present ideas/observations indicating that the key to resolve this problem is

homotopical AQFT := homotopical algebra + AQFT

3. Discuss our results and inform you about the state-of-the-art of our development of homotopical AQFT
AQFT vs Gauge Theory
Basic idea: [Brunetti,Fedenhagen,Verch; ...]

\[
\text{Loc} \overset{\mathcal{A}}{\longrightarrow} \text{Alg}
\]

category of spacetimes \quad category of algebras
AQFT on Lorentzian manifolds (Locally covariant QFT)

◊ **Basic idea**: [Brunetti,Fedenhagen,Verch; ...]

\[\text{Loc} \xrightarrow{\text{functor } \mathcal{A}} \text{Alg} \]

- category of spacetimes
- category of algebras

⇝ “Coherent assignment of observable algebras to spacetimes”

- \(\mathcal{A}(M) = \) observables we can measure in \(M \)
- \(\mathcal{A}(f) : \mathcal{A}(M) \to \mathcal{A}(M') = \) embedding of observables along \(f : M \to M' \)
Basic idea: [Brunetti,Fedenhagen,Verch; ...]

\[
\text{Loc} \xrightarrow{\text{functor } \mathcal{A}} \text{Alg}
\]

- category of spacetimes
- category of algebras

\[\mathcal{A}(M) = \text{observables we can measure in } M\]

\[\mathcal{A}(f) : \mathcal{A}(M) \to \mathcal{A}(M') = \text{embedding of observables along } f : M \to M'\]

BFV axioms (motivated from physics)

<table>
<thead>
<tr>
<th>Isotony</th>
<th>Causality</th>
<th>Time-slice</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\mathcal{A}(M) \xrightarrow{\text{mono}} \mathcal{A}(M')]</td>
<td>[\mathcal{A}(M_1), \mathcal{A}(M_2)] = {0}]</td>
<td>[\mathcal{A}(M) \xrightarrow{\text{iso}} \mathcal{A}(M')]]</td>
</tr>
</tbody>
</table>
Local-to-global property

For every spacetime \(M \), the global algebra \(\mathcal{A}(M) \) can be “recovered” from the algebras \(\mathcal{A}(U) \) corresponding to suitable sub-spacetimes \(U \subseteq M \).
For every spacetime M, the global algebra $\mathfrak{A}(M)$ can be “recovered” from the algebras $\mathfrak{A}(U)$ corresponding to suitable sub-spacetimes $U \subseteq M$.

- Different ways to formalize this property:
Local-to-global property

For every spacetime M, the global algebra $\mathcal{A}(M)$ can be “recovered” from the algebras $\mathcal{A}(U)$ corresponding to suitable sub-spacetimes $U \subseteq M$.

Different ways to formalize this property:

1. Cosheaf property: $\mathcal{A} : \text{Loc} \to \text{Alg}$ is cosheaf (w.r.t. suitable topology)
For every spacetime M, the global algebra $\mathcal{A}(M)$ can be “recovered” from the algebras $\mathcal{A}(U)$ corresponding to suitable sub-spacetimes $U \subseteq M$.

Different ways to formalize this property:

1. **Cosheaf property:** $\mathcal{A} : \text{Loc} \rightarrow \text{Alg}$ is cosheaf (w.r.t. suitable topology)

 Only true for extremely special covers \Rightarrow too strong condition
Local-to-global property

For every spacetime M, the global algebra $\mathfrak{A}(M)$ can be “recovered” from the algebras $\mathfrak{A}(U)$ corresponding to suitable sub-spacetimes $U \subseteq M$.

- Different ways to formalize this property:
 1. **Cosheaf property:** $\mathfrak{A} : \text{Loc} \to \text{Alg}$ is cosheaf (w.r.t. suitable topology)
 \[\uparrow \] only true for extremely special covers \Rightarrow too strong condition
 2. **Universality:** $\mathfrak{A}(M)$ is isomorphic to *Fredenhagen’s universal algebra* corresponding to $\{ U \subseteq M : \text{open, causally compatible and } U \simeq \mathbb{R}^m \}$
Local-to-global property

For every spacetime M, the global algebra $\mathcal{A}(M)$ can be “recovered” from the algebras $\mathcal{A}(U)$ corresponding to suitable sub-spacetimes $U \subseteq M$.

Different ways to formalize this property:

1. **Cosheaf property**: $\mathcal{A} : \text{Loc} \to \text{Alg}$ is cosheaf (w.r.t. suitable topology)

 - Only true for extremely special covers \Rightarrow too strong condition

2. **Universality**: $\mathcal{A}(M)$ is isomorphic to *Fredenhagen’s universal algebra* corresponding to $\{U \subseteq M : \text{open, causally compatible and } U \simeq \mathbb{R}^m\}$

 - \mathcal{A} determined by restriction $\mathcal{A}_\subset : \text{Loc}_\subset \to \text{Alg}$ via left Kan extension

\[
\begin{tikzcd}
\text{Loc}_\subset & \text{Alg} \\
\text{Loc} \arrow{e}{\mathcal{A}} \arrow{se}{\subset} \arrow{sw}{\mathcal{A}} \arrow{ne}{\text{inclusion}}
\end{tikzcd}
\]
Local-to-global property

For every spacetime M, the global algebra $\mathcal{A}(M)$ can be “recovered” from the algebras $\mathcal{A}(U)$ corresponding to suitable sub-spacetimes $U \subseteq M$.

Different ways to formalize this property:

1. **Cosheaf property**: $\mathcal{A} : \text{Loc} \to \text{Alg}$ is cosheaf (w.r.t. suitable topology)

 ✗ only true for extremely special covers ⇒ too strong condition

2. **Universality**: $\mathcal{A}(M)$ is isomorphic to Fredenhagen’s universal algebra corresponding to $\{U \subseteq M : \text{open, causally compatible and } U \simeq \mathbb{R}^m\}$

 ✓ \mathcal{A} determined by restriction $\mathcal{A}_{\subseteq} : \text{Loc}_{\subseteq} \to \text{Alg}$ via left Kan extension

 ✓ true in examples [Lang]
Does $U(1)$-Yang-Mills theory fit into AQFT?

- Differential cohomology groups = gauge orbit spaces

\[
\hat{H}^2(M) \cong \left\{ \text{principal } U(1)\text{-bundles } P \to M \text{ with connection } A \right\}
\left\{ \text{gauge transformations} \right\}
\]
Does $U(1)$-Yang-Mills theory fit into AQFT?

- Differential cohomology groups $= \text{gauge orbit spaces}$

$$\hat{H}^2(M) \cong \left\{ \text{principal } U(1)\text{-bundles } \mathcal{P} \to M \text{ with connection } A \right\} \left\{ \text{gauge transformations} \right\}$$

- Solution spaces of $U(1)$-Yang-Mills theory

$$\mathcal{F}(M) := \left\{ h \in \hat{H}^2(M) : \delta \text{curv}(h) = 0 \right\}$$

are Abelian Fréchet-Lie groups with natural presymplectic structure ω_M.
Does $U(1)$-Yang-Mills theory fit into AQFT?

- **Differential cohomology groups** = gauge orbit spaces

\[\hat{H}^2(M) \equiv \{ \text{principal } U(1)\text{-bundles } P \to M \text{ with connection } A \} \bigg/ \{ \text{gauge transformations} \} \]

- **Solution spaces of $U(1)$-Yang-Mills theory**

\[\mathcal{F}(M) := \{ h \in \hat{H}^2(M) : \delta \text{curv}(h) = 0 \} \]

are Abelian Fréchet-Lie groups with natural presymplectic structure ω_M

Theorem [Becker,AS,Szabo:1406.1514]

Quantization of smooth Pontryagin dual of $(\mathcal{F}(M), \omega_M)$ defines functor $\mathcal{A} : \text{Loc} \to \text{Alg}$ which satisfies **causality** and **time-slice**, but violates **isotony** and **local-to-global properties**.
What is the source of these problems?

- Isotony fails because gauge theories carry topological charges

\[H^2(M; \mathbb{Z}) \text{ and } H^{m-2}(M; \mathbb{Z}) \]

- Local-to-global property fails because we took gauge invariant observables

\[\hat{H}^2(S^1) \sim = U(1) \]
[diagram]
What is the source of these problems?

- Isotony fails because gauge theories carry topological charges

\[
H^2(M; \mathbb{Z}) \text{ and } H^{m-2}(M; \mathbb{Z})
\]

- Local-to-global property fails because we took gauge invariant observables

\[
\hat{H}^2(S^1) \cong U(1) \quad \text{and} \quad \hat{H}^2(\mathbb{I}_{1/2}) \cong 0
\]
Groupoids vs Gauge Orbit Spaces
Groupoids of gauge fields

Let’s consider for the moment gauge theory on $M \simeq \mathbb{R}^m$

- Gauge fields $A \in \Omega^1(M, g)$
- Gauge transformations $g \in C^\infty(M, G)$ acting as $A \triangleleft g = g^{-1} A g + g^{-1} dg$
Groupoids of gauge fields

- Let's consider for the moment gauge theory on $M \simeq \mathbb{R}^m$
 - Gauge fields $A \in \Omega^1(M, \mathfrak{g})$
 - Gauge transformations $g \in C^\infty(M, G)$ acting as $A \triangleleft g = g^{-1} A g + g^{-1} d g$

- **Groupoid** of gauge fields on M

$$G(M) := \Omega^1(M, \mathfrak{g}) \rtimes C^\infty(M, G) =$$
Groupoids of gauge fields

◊ Let’s consider for the moment gauge theory on $M \simeq \mathbb{R}^m$

 – **Gauge fields** $A \in \Omega^1(M, g)$

 – **Gauge transformations** $g \in C^\infty(M, G)$ acting as $A \triangleleft g = g^{-1} A g + g^{-1} dg$

◊ **Groupoid** of gauge fields on M

$$G(M) := \Omega^1(M, g) \rtimes C^\infty(M, G) =$$

Two groupoids are “the same” not only when isomorphic, but also when weakly equivalent \sim model category/homotopical algebra
Groupoids of gauge fields

- Let’s consider for the moment gauge theory on $M \cong \mathbb{R}^m$
 - Gauge fields $A \in \Omega^1(M, g)$
 - Gauge transformations $g \in C^\infty(M, G)$ acting as $A \triangleright g = g^{-1}Ag + g^{-1}dg$

- Groupoid of gauge fields on M

$$G(M) := \Omega^1(M, g) \rtimes C^\infty(M, G)$$

Two groupoids are “the same” not only when isomorphic, but also when weakly equivalent \rightsquigarrow model category/homotopical algebra

- Non-redundant information encoded in the groupoid $G(M)$
 1. Gauge orbit space $\pi_0(G(M)) = \Omega^1(M, g)/C^\infty(M, G)$
Groupoids of gauge fields

- Let's consider for the moment gauge theory on $M \simeq \mathbb{R}^m$
 - Gauge fields $A \in \Omega^1(M, g)$
 - Gauge transformations $g \in C^\infty(M, G)$ acting as $A \triangleleft g = g^{-1} A g + g^{-1} dg$

- **Groupoid** of gauge fields on M

$$G(M) := \Omega^1(M, g) \rtimes C^\infty(M, G) = \begin{array}{c}
\begin{tikzpicture}
 \node (A) at (0,0) [circle,fill,inner sep=2pt] {};
 \node (A') at (1,0) [circle,fill,inner sep=2pt] {};
 \node (A'') at (2,0) [circle,fill,inner sep=2pt] {};
 \draw [->] (A) edge node [left] {g} (A');
 \draw [->] (A') edge node [right] {g''} (A'');
\end{tikzpicture}
\end{array}$$

Two groupoids are “the same” not only when isomorphic, but also when **weakly equivalent** \rightsquigarrow model category/homotopical algebra

- Non-redundant information encoded in the groupoid $G(M)$
 - 1. Gauge orbit space $\pi_0(G(M)) = \Omega^1(M, g)/C^\infty(M, G)$
 - 2. Automorphism groups $\pi_1(G(M), A) = \{ g \in C^\infty(M, G) : A \triangleleft g = A \}$
Groupoids of gauge fields

◊ Let’s consider for the moment gauge theory on $M \simeq \mathbb{R}^m$
 - Gauge fields $A \in \Omega^1(M, g)$
 - Gauge transformations $g \in C^\infty(M, G)$ acting as $A \triangleright g = g^{-1} A g + g^{-1} dg$

◊ Groupoid of gauge fields on M

$$G(M) := \Omega^1(M, g) \rtimes C^\infty(M, G) =$$

Two groupoids are “the same” not only when isomorphic, but also when weakly equivalent \rightsquigarrow model category/homotopical algebra

◊ Non-redundant information encoded in the groupoid $G(M)$
 1. Gauge orbit space $\pi_0(G(M)) = \Omega^1(M, g) / C^\infty(M, G)$
 2. Automorphism groups $\pi_1(G(M), A) = \{ g \in C^\infty(M, G) : A \triangleright g = A \}$

! Gauge invariant observables ignore the π_1’s, hence are incomplete!
Groupoids and local-to-global properties

Groupoids of gauge fields satisfy homotopical local-to-global property
Groupoids and local-to-global properties

Groupoids of gauge fields satisfy homotopical local-to-global property

Homotopy sheaf property

For all manifolds M and all open covers $\{U_{\alpha} \subseteq M\}$, the canonical map

$$G(M) \longrightarrow \text{holim} \left(\prod_{\alpha} G(U_{\alpha}) \Longrightarrow \prod_{\alpha\beta} G(U_{\alpha\beta}) \Longrightarrow \prod_{\alpha\beta\gamma} G(U_{\alpha\beta\gamma}) \Longrightarrow \cdots \right)$$

is a weak equivalence in Grpd.
Groupoids and local-to-global properties

Groupoids of gauge fields satisfy homotopical local-to-global property

Homotopy sheaf property

For all manifolds M and all open covers $\{U_\alpha \subseteq M\}$, the canonical map

$$
\mathcal{G}(M) \rightarrow \text{holim} \left(\prod_\alpha \mathcal{G}(U_\alpha) \rightarrow \prod_{\alpha\beta} \mathcal{G}(U_{\alpha\beta}) \rightarrow \prod_{\alpha\beta\gamma} \mathcal{G}(U_{\alpha\beta\gamma}) \rightarrow \cdots \right)
$$

is a weak equivalence in Grpd.

NB: Precise formulation of the familiar “gluing up to gauge transformation”

$$
\left\{ (\{A_\alpha\}, \{g_{\alpha\beta}\}) : A_\beta|_{U_{\alpha\beta}} = A_\alpha|_{U_{\alpha\beta}} \triangleleft g_{\alpha\beta} , \ g_{\alpha\beta} g_{\beta\gamma} = g_{\alpha\gamma} \text{ on } U_{\alpha\beta\gamma} \right\}
$$

$$
\Leftrightarrow 1:1
$$

$$
\left\{ \text{gauge fields on } M \right\}
$$
Cosimplicial observable algebras
What are “function algebras” on groupoids?

- QFT needs quantized ‘algebras’ of functions on the ‘spaces’ of fields
What are “function algebras” on groupoids?

- QFT needs quantized ‘algebras’ of functions on the ‘spaces’ of fields
 - Space of fields \(\mathcal{F}(M) \) is set (+ smooth structure)
 - \(O(M) = C^\infty(\mathcal{F}(M)) \) has the structure of an algebra
What are “function algebras” on groupoids?

QFT needs quantized ‘algebras’ of functions on the ‘spaces’ of fields

- Space of fields $\mathcal{F}(M)$ is set (+ smooth structure)
 $\leadsto \mathcal{O}(M) = C^\infty(\mathcal{F}(M))$ has the structure of an algebra

- Space of fields $\mathcal{G}(M)$ is groupoid (+ smooth structure)
 $\leadsto \mathcal{O}(M) = "C^\infty(\mathcal{G}(M))" = ?$ has which algebraic structure?
What are “function algebras” on groupoids?

- QFT needs quantized ‘algebras’ of functions on the ‘spaces’ of fields
 - ✔ Space of fields $\mathcal{F}(M)$ is set (+ smooth structure)
 - $\mathcal{O}(M) = C^\infty(\mathcal{F}(M))$ has the structure of an algebra
 - ❓ Space of fields $\mathcal{G}(M)$ is groupoid (+ smooth structure)
 - $\mathcal{O}(M) = "C^\infty(\mathcal{G}(M))" = ?$ has which algebraic structure?

- Nerve construction $N : \text{Grpd} \to \text{sSet}$ assigns the simplicial set

 $$N(\mathcal{G}(M)) = \left(\Omega^1(M, \mathfrak{g}) \leftarrow \Omega^1(M, \mathfrak{g}) \times C^\infty(M, G) \leftarrow \cdots \right)$$
What are “function algebras” on groupoids?

- QFT needs quantized ‘algebras’ of functions on the ‘spaces’ of fields
 - ✓ Space of fields $\mathcal{F}(M)$ is set (+ smooth structure)
 $\rightsquigarrow \ O(M) = C^\infty(\mathcal{F}(M))$ has the structure of an algebra
 - ? Space of fields $\mathcal{G}(M)$ is groupoid (+ smooth structure)
 $\rightsquigarrow \ O(M) = "C^\infty(\mathcal{G}(M))" = ?$ has which algebraic structure?

- Nerve construction $N : \text{Grpd} \to \text{sSet}$ assigns the simplicial set
 $$N(\mathcal{G}(M)) = \left(\Omega^1(M, \mathfrak{g}) \rightleftharpoons \Omega^1(M, \mathfrak{g}) \times C^\infty(M, G) \rightleftharpoons \cdots \rightleftharpoons \cdots)$$

- Taking level-wise smooth functions gives cosimplicial algebra
 $$O(M) = \left(C^\infty(\Omega^1(M, \mathfrak{g})) \rightleftharpoons C^\infty(\Omega^1(M, \mathfrak{g}) \times C^\infty(M, G)) \rightleftharpoons \cdots \rightleftharpoons \cdots)$$
Relation to the BRST formalism and ghost fields

- Dual Dold-Kan correspondence gives equivalence $\text{cAlg} \Leftrightarrow \text{dgAlg}^{\geq 0}$

- Considering only infinitesimal gauge transformations $C_\infty(M, g)$

 - Van Est map $\rightarrow C_\infty(\Omega^1(M, g))$

 - Gauge field observables $\otimes \wedge$ \cdot $C_\infty(M, g)$

 - Ghost field observables \cdot \star $C_\infty(M, g)$

- The cosimplicial algebra $O(M)$ (or equivalently the dg-algebra $O_{dg}(M)$) describes non-infinitesimal analogs $C_\infty(M, G)$ of ghost fields $C_\infty(M, g)$

 - \Rightarrow BRST formalism for finite gauge transformations
Relation to the BRST formalism and ghost fields

- Dual Dold-Kan correspondence gives equivalence $\text{cAlg} \leftrightarrow \text{dgAlg}_{\geq 0}$

\implies Equivalent description of $\mathcal{O}(M)$ in terms of **differential graded algebra**

$$\mathcal{O}_{\text{dg}}(M) = \left(C^{\infty}(\Omega^1(M, \mathfrak{g})) \longrightarrow C^{\infty}(\Omega^1(M, \mathfrak{g}) \times C^{\infty}(M, G)) \longrightarrow \cdots \right)$$
Relation to the BRST formalism and ghost fields

○ Dual Dold-Kan correspondence gives equivalence \(\text{cAlg} \iff \text{dgAlg}^{\geq 0} \)

\(\Rightarrow \) Equivalent description of \(\mathcal{O}(M) \) in terms of \textbf{differential graded algebra}

\[
\mathcal{O}_{\text{dg}}(M) = \left(C^\infty\left(\Omega^1(M, \mathfrak{g}) \right) \xrightarrow{d} C^\infty\left(\Omega^1(M, \mathfrak{g}) \times C^\infty(M, G) \right) \xrightarrow{d} \cdots \right)
\]

○ Considering only infinitesimal gauge transformations \(C^\infty(M, \mathfrak{g}) \)

\[
\mathcal{O}_{\text{dg}}(M) \xrightarrow{\text{van Est map}} \underbrace{C^\infty\left(\Omega^1(M, \mathfrak{g}) \right)}_{\text{gauge field observables}} \otimes \underbrace{\wedge^\bullet C^\infty(M, \mathfrak{g})^*}_{\text{ghost field observables}}
\]
Relation to the BRST formalism and ghost fields

○ Dual Dold-Kan correspondence gives equivalence $\text{cAlg} \cong \text{dgAlg}_{\geq 0}$

\Rightarrow Equivalent description of $\mathcal{O}(M)$ in terms of differential graded algebra

$$\mathcal{O}_{\text{dg}}(M) = \left(C^\infty(\Omega^1(M, g)) \xrightarrow{d} C^\infty(\Omega^1(M, g) \times C^\infty(M, G)) \xrightarrow{d} \cdots \right)$$

○ Considering only infinitesimal gauge transformations $C^\infty(M, g)$

$$\mathcal{O}_{\text{dg}}(M) \xrightarrow{\text{van Est map}} \underbrace{C^\infty(\Omega^1(M, g))}_{\text{gauge field observables}} \otimes \underbrace{\wedge C^\infty(M, g)^*}_{\text{ghost field observables}}$$

The cosimplicial algebra $\mathcal{O}(M)$ (or equivalently the dg-algebra $\mathcal{O}_{\text{dg}}(M)$) describes non-infinitesimal analogs $C^\infty(M, G)$ of ghost fields $C^\infty(M, g)$

\Rightarrow BRST formalism for finite gauge transformations
Working definition for homotopical AQFT
A **homotopical AQFT** is a (weak) functor $\mathcal{A} : \text{Loc} \to \text{dgAlg}_{\geq 0}$ to the model category of noncommutative dg-algebras, which satisfies the following axioms:
A homotopical AQFT is a (weak) functor $\mathcal{A} : \text{Loc} \to \text{dgAlg}^{\geq 0}$ to the model category of noncommutative dg-algebras, which satisfies the following axioms:

1. **Causality:** Given causally disjoint $M_1 \xrightarrow{f_1} M \xleftarrow{f_2} M_2$, there exist a (coherent) cochain homotopy λ_{f_1,f_2} such that

$$\left[\cdot, \cdot \right]_{\mathcal{A}(M)} \circ (\mathcal{A}(f_1) \otimes \mathcal{A}(f_2)) = \lambda_{f_1,f_2} \circ d + d \circ \lambda_{f_1,f_2}$$

2. **Time-slice:** Given Cauchy morphism $f : M \to M'$, there exists a (coherent) homotopy inverse $\mathcal{A}(f)^{-1}$ of $\mathcal{A}(f)$.

3. **Universality:** $\mathcal{A} : \text{Loc} \to \text{dgAlg}^{\geq 0}$ is the homotopy left Kan extension of its restriction $\mathcal{A}^c : \text{Loc}^c \to \text{dgAlg}^{\geq 0}$.

Precise definition requires colored operads [Benini, AS, Woike: work in progress].
A **homotopical AQFT** is a (weak) functor $\mathcal{A} : \text{Loc} \to \text{dgAlg}^{\geq 0}$ to the model category of noncommutative dg-algebras, which satisfies the following axioms:

1. **Causality:** Given causally disjoint $M_1 \xrightarrow{f_1} M \xleftarrow{f_2} M_2$, there exist a (coherent) cochain homotopy λ_{f_1,f_2} such that

$$[\cdot, \cdot]_{\mathcal{A}(M)} \circ (\mathcal{A}(f_1) \otimes \mathcal{A}(f_2)) = \lambda_{f_1,f_2} \circ d + d \circ \lambda_{f_1,f_2}$$

2. **Time-slice:** Given Cauchy morphism $f : M \to M'$, there exists a (coherent) homotopy inverse $\mathcal{A}(f)^{-1}$ of $\mathcal{A}(f)$.
A homotopical AQFT is a (weak) functor $\mathcal{A} : \text{Loc} \to \text{dgAlg}^{\geq 0}$ to the model category of noncommutative dg-algebras, which satisfies the following axioms:

1. **Causality:** Given causally disjoint $M_1 \xrightarrow{f_1} M \xleftarrow{f_2} M_2$, there exist a (coherent) cochain homotopy λ_{f_1,f_2} such that

 \[
 [\cdot, \cdot]_{\mathcal{A}(M)} \circ (\mathcal{A}(f_1) \otimes \mathcal{A}(f_2)) = \lambda_{f_1,f_2} \circ d + d \circ \lambda_{f_1,f_2}
 \]

2. **Time-slice:** Given Cauchy morphism $f : M \to M'$, there exists a (coherent) homotopy inverse $\mathcal{A}(f)^{-1}$ of $\mathcal{A}(f)$.

3. **Universality:** $\mathcal{A} : \text{Loc} \to \text{dgAlg}^{\geq 0}$ is the homotopy left Kan extension of its restriction $\mathcal{A}_\odot : \text{Loc}_\odot \to \text{dgAlg}^{\geq 0}$.
A **homotopical AQFT** is a (weak) functor $\mathcal{A} : \text{Loc} \to \text{dgAlg}_{\geq 0}$ to the model category of noncommutative dg-algebras, which satisfies the following axioms:

1. **Causality:** Given causally disjoint $M_1 \xrightarrow{f_1} M \xleftarrow{f_2} M_2$, there exist a (coherent) cochain homotopy λ_{f_1,f_2} such that

 $$[\cdot, \cdot]_{\mathcal{A}(M)} \circ (\mathcal{A}(f_1) \otimes \mathcal{A}(f_2)) = \lambda_{f_1,f_2} \circ d + d \circ \lambda_{f_1,f_2}$$

2. **Time-slice:** Given Cauchy morphism $f : M \to M'$, there exists a (coherent) homotopy inverse $\mathcal{A}(f)^{-1}$ of $\mathcal{A}(f)$.

3. **Universality:** $\mathcal{A} : \text{Loc} \to \text{dgAlg}_{\geq 0}$ is the homotopy left Kan extension of its restriction $\mathcal{A}_\otimes : \text{Loc}_\otimes \to \text{dgAlg}_{\geq 0}$.

Precise definition requires **colored operads** [Benini,AS,Woike: work in progress]

homotopical AQFT $:= \text{AQFT}_\infty$-algebra + operadic universality
Local-to-global property in Abelian gauge theory
Universal global gauge theory observables

- For $G = U(1)$ and $M \simeq \mathbb{R}^m$, $\mathcal{G}(M)$ can be described by chain complex

$$\mathcal{G}_{\text{chain}}(M) = \left(\Omega^1(M) \leftarrow \frac{1}{2\pi i} d \log \rightarrow C^\infty(M, U(1)) \right)$$
Universal global gauge theory observables

- For $G = U(1)$ and $M \simeq \mathbb{R}^m$, $G(M)$ can be described by chain complex

$$G_{\text{chain}}(M) = \left(\Omega^1(M) \xleftarrow{\frac{1}{2\pi i}} d \log \xrightarrow{} C^\infty(M, U(1)) \right)$$

- Smooth Pontryagin dual cochain complex of observables

$$O \hat{\otimes}(M) := \left(\Omega^{m-1}_c(M) \xrightarrow{d} \Omega^m_{c;\mathbb{Z}}(M) \right)$$
Universal global gauge theory observables

- For $G = U(1)$ and $M \simeq \mathbb{R}^m$, $\mathcal{G}(M)$ can be described by chain complex

\[
\mathcal{G}_{\text{chain}}(M) = \left(\Omega^1(M) \xrightarrow{\frac{1}{2\pi i} d \log} C^\infty(M, U(1)) \right)
\]

- Smooth Pontryagin dual cochain complex of observables

\[
\mathcal{O}_{\text{c}}(M) := \left(\Omega^{m-1}_c(M) \xrightarrow{d} \Omega^m_c(M) \right)
\]

- Homotopy left Kan extension of $\mathcal{O}_{\text{c}} : \text{Loc}_{\text{c}} \to \text{Ch}^{\geq 0}$

\[
\mathcal{O}(M) := \text{hocolim} \left(\mathcal{O}_{\text{c}} : \text{Loc}_{\text{c}} \downarrow M \to \text{Ch}^{\geq 0} \right)
\]
Universal global gauge theory observables

- For $G = U(1)$ and $M \simeq \mathbb{R}^m$, $\mathcal{G}(M)$ can be described by chain complex

$$\mathcal{G}_{\text{chain}}(M) = \left(\Omega^1(M) \xleftarrow{\frac{1}{2\pi i}} \log \right) \mathcal{C}^\infty(M, U(1))$$

- Smooth Pontryagin dual cochain complex of observables

$$\mathcal{O}_\odot(M) := \left(\Omega_{\text{c}}^{m-1}(M) \xrightarrow{\text{d}} \Omega_{\text{c};\mathbb{Z}}^m(M) \right)$$

- Homotopy left Kan extension of $\mathcal{O}_\odot : \text{Loc}\odot \to \text{Ch}^{\geq 0}$

$$\mathcal{O}(M) := \text{hocolim} \left(\mathcal{O}_\odot : \text{Loc}\odot \downarrow M \to \text{Ch}^{\geq 0} \right)$$

Theorem [Benini,AS,Szabo:1503.08839]

1. For $M \simeq \mathbb{R}^m$, $\mathcal{O}_\odot(M)$ and $\mathcal{O}(M)$ are naturally weakly equivalent.

2. For every M, $\mathcal{O}(M)$ weakly equivalent to dual Deligne complex on M.
Toy-models of homotopical AQFT
AQFT on structured spacetimes

◊ Basic idea:

1. Consider AQFT $\mathcal{A} : \text{Str} \to \text{Alg}$ on category of spacetimes with extra geometric structures, i.e. category fibered in groupoids $\pi : \text{Str} \to \text{Loc}$. ($\pi^{-1}(M)$ is groupoid of structures over M, e.g. spin structures, gauge fields)
AQFT on structured spacetimes

Basic idea:

1. Consider AQFT $\mathcal{A} : \text{Str} \rightarrow \text{Alg}$ on category of spacetimes with extra geometric structures, i.e. category fibered in groupoids $\pi : \text{Str} \rightarrow \text{Loc}$.

 $(\pi^{-1}(M)$ is groupoid of structures over M, e.g. spin structures, gauge fields)

2. Regard \mathcal{A} as a trivial homotopical AQFT $\mathcal{A} : \text{Str} \rightarrow \text{dgAlg}^{\geq 0}$ via embedding $\text{Alg} \rightarrow \text{dgAlg}^{\geq 0}$ of algebras into dg-algebras.
Basic idea:

1. Consider AQFT $\mathcal{A} : \text{Str} \to \text{Alg}$ on category of spacetimes with extra geometric structures, i.e. category fibered in groupoids $\pi : \text{Str} \to \text{Loc}$.

\((\pi^{-1}(M)\) is groupoid of structures over \(M\), e.g. spin structures, gauge fields\)

2. Regard \mathcal{A} as a trivial homotopical AQFT $\mathcal{A} : \text{Str} \to \text{dgAlg} \geq 0$ via embedding $\text{Alg} \to \text{dgAlg} \geq 0$ of algebras into dg-algebras.

3. Perform homotopy right Kan extension

\[
\text{Str} \xrightarrow{\mathcal{A}} \text{dgAlg} \geq 0 \xleftarrow{\pi} \text{Loc}
\]

\[
\xrightarrow{\text{hoU}_{\pi} \mathcal{A}}
\]

to induce a nontrivial homotopical AQFT $\text{hoU}_{\pi} \mathcal{A}$ on Loc.
AQFT on structured spacetimes

Basic idea:

1. Consider AQFT $\mathcal{A} : \text{Str} \to \text{Alg}$ on category of *spacetimes with extra geometric structures*, i.e. category fibered in groupoids $\pi : \text{Str} \to \text{Loc}$.

 ($\pi^{-1}(M)$ is groupoid of structures over M, e.g. spin structures, gauge fields)

2. Regard \mathcal{A} as a trivial homotopical AQFT $\mathcal{A} : \text{Str} \to \text{dgAlg}_{\geq 0}$ via embedding $\text{Alg} \to \text{dgAlg}_{\geq 0}$ of algebras into dg-algebras.

3. Perform homotopy right Kan extension

\[
\begin{array}{c}
\text{Str} \\
\downarrow \pi \\
\text{Loc} \\
\uparrow \mathcal{A} \\
\text{dgAlg}_{\geq 0} \\
\uparrow \text{hoU}_\pi \mathcal{A} \\
\end{array}
\]

to induce a *nontrivial* homotopical AQFT $\text{hoU}_\pi \mathcal{A}$ on Loc.

Theorem [Benini,AS:1610.06071]

Assume that $\pi : \text{Str} \to \text{Loc}$ is strongly Cauchy flabby. Then the homotopy right Kan extension $\text{hoU}_\pi \mathcal{A} : \text{Loc} \to \text{dgAlg}_{\geq 0}$ satisfies the *causality and time-slice axioms* of homotopical AQFT. (Coherences just established in low orders.)
Summary and Outlook
Quantum gauge theories are **NOT** contained in the AQFT framework.

- Already very promising results:
 - Local-to-global property of observables \[\text{[Benini,AS,Szabo:1503.08839]}\]
 - Toy-models of homotopical AQFT \[\text{[Benini,AS:1610.06071]}\]
 - Yang-Mills stack and stacky Cauchy problem \[\text{[Benini,AS,Schreiber:1704.01378]}\]

- Open problems/Work in progress:
 1. Develop operadic approach to homotopical AQFT to control coherences \[\text{[Benini,AS,Woike: work in progress]}\]
 2. Construct proper examples of dynamical and quantized gauge theories \[\text{[Benini,AS,Szabo: work in progress]}\]
Quantum gauge theories are **NOT** contained in the AQFT framework.

To capture crucial homotopical features of classical gauge theories, one needs “higher algebras” to formalize quantum gauge theories.
Quantum gauge theories are **NOT** contained in the AQFT framework.

To capture crucial homotopical features of classical gauge theories, one needs “higher algebras” to formalize quantum gauge theories.

⇒ **Homotopical AQFT**
Quantum gauge theories are **NOT** contained in the AQFT framework

To capture crucial homotopical features of classical gauge theories, one needs “higher algebras” to formalize quantum gauge theories

⇒ **Homotopical AQFT**

Already very promising results:

- ✓ Local-to-global property of observables [Benini,AS,Szabo:1503.08839]
Quantum gauge theories are **NOT** contained in the AQFT framework.

To capture crucial homotopical features of classical gauge theories, one needs “higher algebras” to formalize quantum gauge theories.

⇒ **Homotopical AQFT**

- Already very promising results:
 - ✓ Local-to-global property of observables \cite{Benini,AS,Szabo:1503.08839}
 - ✓ Toy-models of homotopical AQFT \cite{Benini,AS:1610.06071}
Quantum gauge theories are **NOT** contained in the AQFT framework.

To capture crucial homotopical features of classical gauge theories, one needs "higher algebras" to formalize quantum gauge theories.

⇒ **Homotopical AQFT**

Already very promising results:

- ✔ Local-to-global property of observables [Benini,AS,Szabo:1503.08839]
- ✔ Toy-models of homotopical AQFT [Benini,AS:1610.06071]
Quantum gauge theories are **NOT** contained in the AQFT framework

To capture crucial homotopical features of classical gauge theories, one needs “higher algebras” to formalize quantum gauge theories

⇒ **Homotopical AQFT**

Already very promising results:

- ✓ Local-to-global property of observables [Benini,AS,Szabo:1503.08839]
- ✓ Toy-models of homotopical AQFT [Benini,AS:1610.06071]

Open problems/Work in progress:

1. Develop operadic approach to homotopical AQFT to control coherences [Benini,AS,Woike: work in progress]
Quantum gauge theories are **NOT** contained in the AQFT framework

To capture crucial homotopical features of classical gauge theories, one needs “higher algebras” to formalize quantum gauge theories

⇒ **Homotopical AQFT**

Already very promising results:

- ✓ Local-to-global property of observables [Benini,AS,Szabo:1503.08839]
- ✓ Toy-models of homotopical AQFT [Benini,AS:1610.06071]

Open problems/Work in progress:

1. Develop operadic approach to homotopical AQFT to control coherences [Benini,AS,Woike: work in progress]
2. Construct proper examples of dynamical and quantized gauge theories [Benini,AS,Szabo: work in progress]
Quantum gauge theories are **NOT** contained in the AQFT framework.

To capture crucial homotopical features of classical gauge theories, one needs “higher algebras” to formalize quantum gauge theories.

⇒ **Homotopical AQFT**

Already very promising results:

- Local-to-global property of observables [Benini,AS,Szabo:1503.08839]
- Toy-models of homotopical AQFT [Benini,AS:1610.06071]

Open problems/Work in progress:

1. Develop operadic approach to homotopical AQFT to control coherences [Benini,AS,Woike: work in progress]
2. Construct proper examples of dynamical and quantized gauge theories [Benini,AS,Szabo: work in progress]

Thanks for your attention.