Talk 1.3: Restriction species

Imma Gálvez-Carrillo Universitat Politècnica de Catalunya

24/07/2017

Joint work with Joachim Kock (Universitat Autònoma de Barcelona) Andrew Tonks (University of Leicester)

arXiv:1512.07573, 1512.07577, 1512.07580 (to appear Adv Math), 1602.05082 (Proc Royal Soc Edinburgh, doi:10.1017/prm.2017.20) and 1707.?????

Higher Structures Lisbon
Deformation theory, Operads, Higher categories: developments & applications
Instituto Superior Técnico, Lisbon, 24-27 July 2017

Categorifying linear algebra

- We work in a monoidal closed ∞-category LIN
 - objects are all slices $\mathfrak{S}_{/\!I}$ of the ∞ -category \mathfrak{S} of ∞ -groupoids,
 - morphisms are linear functors $\mathfrak{S}_{/I} \dashrightarrow \mathfrak{S}_{/J}$.
- A slice $\mathfrak{S}_{/B}$ should be thought of as a generalised 'vector space with specified basis': any $X \to B$ is a homotopy linear combination

$$"\sum_{b\in\pi_0B}X_b\cdot \left(1\xrightarrow{\ulcorner b\urcorner}B\right)" \ = \ \int^{b\in B}X_b\otimes \ulcorner b\urcorner \ := \ \operatorname{hocolim}\left(\begin{matrix} B\to\mathfrak{S}\\b\mapsto X_b\end{matrix}\right).$$

• Any $f: B' \to B$ gives adjoint functors between slice categories

$$\mathfrak{S}_{/B'} \stackrel{f_!}{\longrightarrow} \mathfrak{S}_{/B}, \qquad \mathfrak{S}_{/B} \stackrel{f^*}{\longrightarrow} \mathfrak{S}_{/B'}$$

defined by post-composition and homotopy pullback.

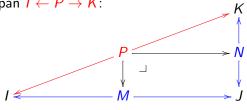
• Using these constructions, any span between I and J

$$I \stackrel{p}{\longleftarrow} M \stackrel{q}{\longrightarrow} J$$

defines a so-called linear functor

$$\mathfrak{S}_{/I} \xrightarrow{p^*} \mathfrak{S}_{/M} \xrightarrow{q_!} \mathfrak{S}_{/J}.$$

Composition is 'matrix multiplication': the Beck-Chevalley condition says the composite of linear functors defined by spans I ← M → J and J ← N → K is defined by the pullback span I ← P → K:



The monoidal structure on LIN is defined on slices by

$$\mathfrak{S}_{/I}\otimes\mathfrak{S}_{/J} := \mathfrak{S}_{/I\times J}$$

with $\mathfrak{S} = \mathfrak{S}_{/1}$ as unit,

• and the tensor product of two linear functors defined by spans

$$(\mathfrak{S}_{/I} \dashrightarrow \mathfrak{S}_{/J}) \otimes (\mathfrak{S}_{/K} \dashrightarrow \mathfrak{S}_{/L}) = (\mathfrak{S}_{/I \times K} \dashrightarrow \mathfrak{S}_{/J \times L})$$

Cardinality of ∞-groupoids and linear functors [Quinn (1995), Baez–Dolan (2001)]

- An ∞ -groupoid X is locally finite if $\forall x \in \pi_0 X$ the homotopy groups $\pi_i(X,x)$ are finite for $i \geq 1$ and are eventually trivial.
- A locally finite ∞ -groupoid X is finite if $\pi_0 X$ is finite.
- The cardinality of X is then $|X| = \sum_{x_0 \in \pi_0 X} \prod_{i \ge 1} |\pi_i(X, x_0)|^{(-1)^i} \in \mathbb{Q}$
- The cardinality of $(X \to B) \in \mathfrak{S}_{/B}$ is the vector $\sum_{b \in \pi_0 B} |X_b| e_b \in \mathbb{Q} \pi_0 B$
- That of a span $S \leftarrow M \rightarrow T$ is a matrix $|M| : \mathbb{Q} \pi_0 S \rightarrow \mathbb{Q} \pi_0 T$
- The cardinality of a finite ∞ -groupoid is

$$|X| := \sum_{x \in \pi_0 X} \prod_{i>0} |\pi_i(X,x)|^{(-1)^i} \in \mathbb{Q}.$$

 In particular, we have equivalence-invariant notions of finiteness and cardinality of ordinary groupoids

$$|G| := \sum_{x \in \pi_0 G} \frac{1}{|\operatorname{Aut}_G(x)|}.$$

∞ -categorification of the notion of coalgebra

A coalgebra in LIN is a slice $\mathfrak{S}_{/I}$ together with linear functors

$$\mathfrak{S}_{/I} \xrightarrow{\delta_0} \mathfrak{S} \text{ (counit) and } \mathfrak{S}_{/I} \xrightarrow{\delta_2} \mathfrak{S}_{/I}^{\otimes 2} = \mathfrak{S}_{/I^2} \text{ (comultiplication)}$$

$$\begin{array}{lll} \text{that are counital:} & \mathfrak{S}_{0}^{\otimes 2} \stackrel{1 \otimes \delta_{0}}{\longrightarrow} \mathfrak{S}_{/I} & \mathfrak{S}_{0}^{\otimes 2} \stackrel{1 \otimes \delta_{2}}{\longrightarrow} \mathfrak{S}_{/I}^{\otimes 3} \\ (1 \otimes \delta_{0}) \delta_{2} = 1 = (\delta_{0} \otimes 1) \delta_{2} & \mathfrak{S}_{/I}^{\otimes 2} \stackrel{1 \otimes \delta_{0}}{\longrightarrow} \mathfrak{S}_{/I} & \mathfrak{S}_{0}^{\otimes 2} \stackrel{1 \otimes \delta_{2}}{\longrightarrow} \mathfrak{S}_{/I}^{\otimes 3} \\ \text{and coassociative:} & \delta_{2} \mid & \delta_{0} \otimes 1 & \delta_{2} \mid & \delta_{2} \otimes 1 \\ (1 \otimes \delta_{2}) \delta_{2} = (\delta_{2} \otimes 1) \delta_{2} & \mathfrak{S}_{/I}^{\otimes 2} \stackrel{1 \otimes \delta_{0}}{\longrightarrow} \mathfrak{S}_{/I}^{\otimes 2} & \mathfrak{S}_{/I}^{\otimes 2} & \mathfrak{S}_{/I}^{\otimes 2} \end{array}$$

Suppose the linear functors δ_0 and δ_2 are defined by the spans

$$I \xleftarrow{s} M \longrightarrow 1 \qquad I \xleftarrow{m} N \xrightarrow{c} I^{2}.$$
Then the counital and the coassociative properties can be written:
$$N \xleftarrow{l} M \times I \qquad \qquad I^{2} \xleftarrow{l} X M \to I$$

$$N \xleftarrow{l} M \times I \qquad \qquad N \xleftarrow{l} P \to N \times I$$

$$N \xleftarrow{l} M \times I \qquad \qquad N \xleftarrow{l} M \times I$$

Recovering classical coalgebras

• Consider spans $I \stackrel{s}{\longleftarrow} M \to 1$, $I \stackrel{m}{\longleftarrow} N \stackrel{c}{\longrightarrow} I^2$ satisfying the above counit and coassociativity conditions and that restrict to linear functors on slices of the category $\mathfrak s$ of finite ∞ -groupoids

Theorem

Taking cardinality of such a finite coalgebra in LIN defines a classical coalgebra structure on the vector space $\mathbb{Q}\pi_0 I$

$$\mathfrak{s}_{/I} - - > \mathfrak{s} \qquad \mathfrak{s}_{/I} - - > \mathfrak{s}_{/I}^{\otimes 2}$$

$$\mathbb{Q}\pi_0 I \longrightarrow \mathbb{Q} \qquad \mathbb{Q}\pi_0 I \longrightarrow \mathbb{Q}\pi_0 I^{\otimes 2}.$$

Incidence coalgebras in LIN

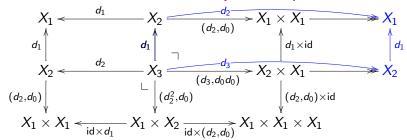
• For any simplicial ∞ -groupoid X, the spans

$$X_1 \stackrel{s_0}{\longleftrightarrow} X_0 \longrightarrow 1, \qquad X_1 \stackrel{d_1}{\longleftrightarrow} X_2 \stackrel{(d_2,d_0)}{\longleftrightarrow} X_1 \times X_1$$

define linear functors, termed counit and comultiplication

$$\delta_0:\mathfrak{S}_{/X_1}\dashrightarrow\mathfrak{S}_{/1},\qquad \quad \delta_2:\mathfrak{S}_{/X_1}\dashrightarrow\mathfrak{S}_{/(X_1\times X_1)}.$$

• We have seen that for coassociativity, for example, we need:



• This is equivalent to a certain other set of squares being pullbacks.

Definition (Decomposition space [G-K-T, arXiv:1404.3202])

A decomposition space is a simplicial ∞-groupoid

$$X: \mathbb{A}^{\mathsf{op}} \to \mathfrak{S}$$

sending certain pushouts in ${\mathbb \Delta}$ to pullbacks in ${\mathfrak S}$

$$X \begin{pmatrix} [n] & \xrightarrow{f} & [m] \\ g & & \downarrow g' \\ [q] & \xrightarrow{f'} & [p] \end{pmatrix} = X_{p} \xrightarrow{f'^{*}} X_{q} \\ = g'^{*} \downarrow & \downarrow g^{*} \\ X_{m} \xrightarrow{f^{*}} & X_{n}.$$

The pushouts involved are those for which g, g' are generic (that is, end-point preserving) maps in \triangle , f, f' are free (that is, distance-preserving) maps in \triangle .

This notion in fact coincides with that of unital 2-Segal space formulated independently by Dyckerhoff and Kapranov, see arXiv:1212.3563, arXiv:1306.2545, arXiv:1403.5799.

• Free maps are composites of outer coface maps $\partial^{\perp} = \partial^{0}$, $\partial^{\top} = \partial^{n}$, generic maps are composites of inner coface & codegeneracy maps.

There is a monoidal structure (on the generic subcategory)

$$[n]\vee[m]=[n+m].$$

• Free maps in \triangle are the 'obvious' inclusions $[n] \rightarrowtail [a] \lor [n] \lor [b]$.

Lemma

Generic and free maps in \triangle admit pushouts along each other, and the results are again generic and free.

$$[n] \xrightarrow{f} [a] \vee [n] \vee [b] = [a+n+b]$$

$$\downarrow id \vee g \vee id$$

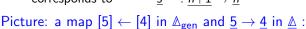
$$[q] \xrightarrow{f'} [a] \vee [q] \vee [b] = [a+q+b]$$

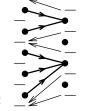
These are the pushouts that any decomposition space $X : \triangle^{op} \to \mathfrak{S}$ is required to send to pullbacks of ∞ -groupoids.

- The objects of \triangle are denoted $[n] := \{0, 1, ..., n\}, n \ge 0$. The monotone maps are generated by
 - $s^k : [n+1] \rightarrow [n]$ that repeats the element $k \in [n]$,
 - $d^k: [n] \to [n+1]$ that skips the element $k \in [n+1]$.
- The objects of $\underline{\mathbb{A}}$ are denoted $\underline{n} := \{1, \dots, n\}, \quad n \ge 0$. The monotone maps are generated by
 - $\underline{s}^k : \underline{n+1} \to \underline{n}$ that repeats the element $k+1 \in \underline{n}$, $(0 \le k \le n-1)$,
 - $\underline{d}^k : \underline{n} \to \underline{n+1}$ that skips the element $k+1 \in \underline{n+1}$, $(0 \le k \le n)$.
- ullet There is a canonical contravariant isomorphism of categories between the generic subcategory of ${\mathbb A}$ and the augmented simplicial category.

[Joyal–Stone duality] $\mathbb{A}_{gen}^{op} \cong \underline{\mathbb{A}}$

- the degeneracy map $s^k:[n+1] \to [n]$ corresponds to $\underline{\underline{d}}^k:\underline{\underline{n}} \to \underline{n+1}$ an inner coface map $d^{k+1}:[n] \to [n+1]$
 - o an inner coface map $d^{k+1}:[n] o [n+1]$ corresponds to $\underline{s}^k:\underline{n+1} o \underline{n}$





Conservative and ULF maps

A simplicial map $F: Y \to X$ is called

• cartesian on a generic map $g:[m] \to [n]$ in \triangle if the naturality square

$$\begin{array}{c|c}
Y_m & \stackrel{g^*}{\longleftarrow} Y_n \\
F_m & \downarrow & \downarrow \\
X_m & \stackrel{g^*}{\longleftarrow} X_n
\end{array}$$

is a pullback.

- conservative if F is cartesian on all codegeneracy maps σ_n^i of Δ ,
- ULF if F is cartesian on generic coface maps ∂_n^i , $i \neq 0, n$, of \mathbb{A} ,
- cULF (that is, conservative with Unique Lifting of Factorisations) if it is cartesian on all generic maps of \triangle .

Such maps behave well on decomposition spaces. For example:

Lemma

If F is cULF and X is a decomposition space then so is Y.

The incidence coalgebra of a decomposition space

• Let X be a decomposition space. For $n \ge 0$ there is a linear functor

$$\delta_n:\mathfrak{S}_{/X_1}\dashrightarrow\mathfrak{S}_{/X_1}\otimes\cdots\otimes\mathfrak{S}_{/X_1}$$

termed the *n*th comultiplication map, defined by the span

$$X_1 \longleftarrow X_n \longrightarrow X_1 \times \cdots \times X_1$$

• δ_0 is the counit, and δ_1 is the identity.

Theorem (Coherent coassociativity)

Any linear functor $\mathfrak{S}_{/X_1} \xrightarrow{--} \mathfrak{S}_{/X_1} \otimes \cdots \otimes \mathfrak{S}_{/X_1}$ given by composites of tensors of comultiplication maps is again a comultiplication map.

In particular, $(1 \otimes \delta_0)\delta_2 = 1 = (\delta_0 \otimes 1)\delta_2$, $(1 \otimes \delta_2)\delta_2 = \delta_3 = (\delta_2 \otimes 1)\delta_2$ so $C(X) := \mathfrak{S}_{/X_1}$ is a (counital, coassociative) coalgebra in LIN.

Functoriality for cULF maps of decomposition spaces

Recall that a map $F: X \to X'$ of simplicial groupoids is said to be conservative and ULF (cULF) if it is cartesian on generic maps.

$$X_{1} \stackrel{g}{\rightleftharpoons} X_{n} \stackrel{f}{\longrightarrow} X_{1}^{n} \qquad \mathfrak{S}_{/X_{1}} \stackrel{f}{\rightleftharpoons} \mathfrak{S}_{/X_{n}} \stackrel{f}{\longrightarrow} \mathfrak{S}_{/X_{1}}^{\otimes n}$$

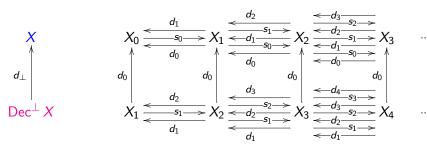
$$F_{1} \downarrow \qquad \downarrow F_{n} \qquad \downarrow F_{1}^{n} \qquad F_{1!} \downarrow \qquad F_{n!} \downarrow \qquad \downarrow F_{1!} \otimes n$$

$$X'_{1} \stackrel{g'}{\rightleftharpoons} X'_{n} \stackrel{f'}{\longrightarrow} X'_{1}^{n} \qquad \mathfrak{S}_{/X'_{1}} \stackrel{g'^{*}}{\Longrightarrow} \mathfrak{S}_{/X'_{n}} \stackrel{f'_{!}}{\longrightarrow} \mathfrak{S}_{/X'_{1}}^{\otimes n}$$

Thus any cULF map $F: X \to X'$ between decomposition spaces induces a homomorphism of coalgebras $F_{1!}: C(X) \to C(X')$, since $F_{1!}: \mathfrak{S}_{/X_1} \to \mathfrak{S}_{/X_1'}$ commutes with comultiplication maps.

Decalage

Recall that the augmented functors Dec^{\perp} and Dec^{\top} forget the bottom and top face and degeneracy maps respectively.



Lemma

A simplicial ∞ -groupoid $X: \mathbb{A}^{op} \to \mathfrak{S}$ is a decomposition space if and only if both $\mathsf{Dec}^\top(X)$ and $\mathsf{Dec}^\perp(X)$ are Segal spaces, and the two comparison maps are cULF :

$$d_{ op}: \mathsf{Dec}^{ op}(X) o X \qquad \qquad d_{ot}: \mathsf{Dec}^{ot}(X) o X$$

Monoidal decomposition spaces

- Recall that a bialgebra is a coalgebra with a compatible algebra structure, i.e. multiplication and unit are coalgebra homomorphisms.
- A simplicial map f between decomposition spaces induces a coalgebra homomorphism on incidence coalgebras if f is cULF.
- Accordingly we define a monoidal decomposition space to be a decomposition space Z equipped with an associative unital multiplication given by cULF maps $m: Z \times Z \to Z$ and $e: 1 \to Z$.

If Z is a monoidal decomposition space then $C(Z) = \mathfrak{S}_{/Z_1}$ is naturally a bialgebra, termed its *incidence bialgebra*.

- Its cardinality inherits a classical bialgebra structure.
- cULF monoidal maps between monoidal decomposition spaces induce bialgebra maps.

The Dec of a monoidal decomposition space has again a natural monoidal structure, and the dec map is cULF monoidal.

A classical example

- Let \mathbb{B} be the monoidal groupoid of finite sets and bijections, with monoidal structure given by disjoint union, and let \mathbf{B} be its nerve.
- \bullet Let $\mathbb I$ be the category of finite sets and injections, with nerve I.
- Dür (1985): on identifying injections with isomorphic complements in the incidence coalgebra of \mathbb{I} , one obtains the binomial coalgebra.
- In our language: the lower dec map gives a conservative ULF functor

$$\mathbf{I} \cong \operatorname{Dec}_{\perp}(\mathbf{B}) \stackrel{d_{\perp}}{\longrightarrow} \mathbf{B}$$

$$(x_0 \subseteq x_0 + x_1 \subseteq \cdots \subseteq x_0 + \cdots \times x_k) \longleftrightarrow (x_0, x_1, \dots, x_k) \mapsto (x_1, \dots, x_k)$$

• In terms of Waldhausen's S_{\bullet} -construction, d_{\perp} deletes the last row. For k=3:

so that the effect on a chain of injections

$$[x_0 \subseteq x_0 + x_1 \subseteq x_0 + x_1 + x_2 \subseteq \cdots \subseteq x_0 + x_1 \cdots + x_k]$$

is to send it to the sequence of successive complements of inclusions

$$[x_1, x_2, \ldots, x_k]$$

 Both I and B are monoidal decomposition spaces under disjoint union, and this comparison functor is monoidal also, inducing a quotient homomorphism of incidence bialgebras

$$C(I) \rightarrow C(B)$$

Numerical section coefficients for incidence coalgebras

If X is a locally finite decomposition space, the cardinality of

$$\delta_2:\mathfrak{s}_{/X_1}\dashrightarrow\mathfrak{s}_{/X_1}\otimes\mathfrak{s}_{/X_1}$$

may be written in terms of the canonical basis $e_f = |1 \stackrel{f}{ o} X_1|$ as

$$\mathbb{Q}\pi_0 X_1 \longrightarrow \mathbb{Q}\pi_0 X_1 \otimes \mathbb{Q}\pi_0 X_1, \qquad \textit{e}_f \mapsto \sum_{\textit{a},\textit{b}} c_{\textit{a},\textit{b}}^f \; \textit{e}_{\textit{a}} \otimes \textit{e}_{\textit{b}}.$$

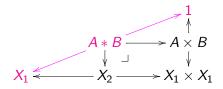
Here $c_{a,b}^f$ is given by cardinalities of components of X_1 and of fibres of face maps $d_1, d_0, d_2: X_2 \to X_1$.

$$c_{a,b}^f = |(X_1)_{[a]}| |(X_1)_{[b]}| |(X_2)_{f,a,b}|.$$

The "linear dual" of the incidence coalgebra

The incidence algebra of linear functors $\mathfrak{S}_{/X_1} \dashrightarrow \mathfrak{S}$

- If X is a decomposition space, the linear functors $\mathfrak{S}_{/X_1} \dashrightarrow \mathfrak{S}$ form the convolution algebra, dual to the incidence coalgebra C(X).
- Its cardinality is the classical convolution algebra $\mathbb{Q}^{\pi_0 X_1}$, if X is locally finite, that is dual to the classical incidence coalgebra.
- Let F, G be defined by spans $X_1 \leftarrow A \rightarrow 1$ and $X_1 \leftarrow B \rightarrow 1$. Their convolution is $F * G = (F \otimes G) \delta_2$, defined by the span



The Zeta functor and Möbius inversion

- The counit $\delta_0: \mathfrak{S}_{/X_1} \dashrightarrow \mathfrak{S}$ is neutral for convolution.
- The zeta functor $\zeta: \mathfrak{S}_{/X_1} \dashrightarrow \mathfrak{S}$ is the linear functor defined by the span $X_1 \xleftarrow{=} X_1 \longrightarrow 1$.

The zeta functor has convolution-inverse, the Möbius functor, except for the lack of additive inverses.

• The convolution inverse to ζ should be the Möbius functor:

"
$$\mu = \mu_{\text{even}} - \mu_{\text{odd}}$$
", " $\zeta * (\mu_{\text{even}} - \mu_{\text{odd}}) = \delta_0$ ",

Before taking cardinality we have no negative quantities, but we can define linear functors $\mu_{\rm even}, \mu_{\rm odd}$ with

$$\zeta * \mu_{\text{even}} = \delta_0 + \zeta * \mu_{\text{odd}}. \tag{*}$$

Completeness

- The axioms of Lawvere-Menni for Möbius categories ensure that the Möbius inversion formula is a finite sum of terms: they say that an arrow can be factored only in finitely many ways as a chain of non-identity arrows.
- In the simplicial nerve X of a Möbius category, this says that there are only finitely many non-degenerate simplices whose long edge is a given arrow $a \in X_1$.
- For a general simplicial object, degenerate should mean to be in the 'image' of the degeneracy maps. What about non-degenerate?
- The 'complement of the image' makes sense here if the degeneracy maps $s_i: X_n \to X_{n+1}$ are fully faithful as functors of ∞ -groupoids, that is, maps whose homotopy fibres are empty or contractible.
- For decomposition spaces, the case $s_0: X_0 \to X_1$ is enough.

• If X is a decomposition space in which $s_0: X_0 \to X_1$ is fully faithful, we define linear functors μ_r by the spans

$$X_1 \stackrel{d_1^{r-1}}{\longleftarrow} \vec{X_r} \longrightarrow 1.$$

Here \vec{X}_r is the subgroupoid of non-degenerate simplices.

Theorem (Möbius inversion without additive inverses)

The linear functors μ_r satisfy

$$\mu_0 = \delta_0, \qquad \zeta * \mu_r = \mu_r + \mu_{r+1}.$$

Thus

$$\mu_{\text{even}} := \sum_{r \text{ even}} \mu_r, \quad \mu_{\text{odd}} := \sum_{r \text{ odd}} \mu_r$$

satisfy

$$\zeta * \mu_{even} = \delta_0 + \zeta * \mu_{odd}. \tag{*}$$

Restriction species

 A restriction species (Schmitt, 1993) is a presheaf on the category of finite sets and injections.

$$R: \mathbb{I}^{op} \to \underline{\mathbf{Set}}$$
$$S \mapsto R[S]$$

- Recall: a (classical) species is a presheaf on finite sets and bijections.
- An *R*-structure on a finite set *S* restricts to one on each of its subsets *A* (whence the name) denoted by a restriction bar:

$$A \subset S$$

$$R[S] \to R[A]$$

$$X \mapsto X|A$$

Coalgebras from restriction species

Schmitt associates to a restriction species a coalgebra spanned by isoclasses of R-structures, with the comultiplication defined by

$$\delta_2(X) = \sum_{A+B=S} X|A \otimes X|B \quad X \in R[S]$$

and the counit ε sending the empty R-structure to 1.

Schmitt's graph coalgebra

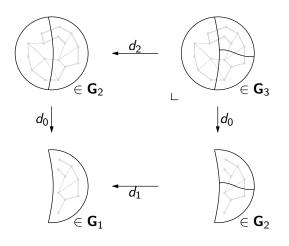
- For any set V, consider the set of graphs G with vertex set V.
- For $U \subseteq V$, G|U is the graph restricted to the vertex set U.
- This is clearly a restriction species.
- Its associated coalgebra is Schmitt's graph coalgebra.
- In fact, it is the cardinality of a coalgebra associated to a decomposition space G.

The decomposition space **G**

G is the simplicial groupoid with

- \bullet **G**₀ a point (a contractible groupoid) labelled by the empty graph
- **G**₁ the groupoid of all graphs and their isomorphisms
- G_k the groupoid of graphs endowed with an ordered partition of their vertex sets V(G) into k possibly empty parts and simplicial structure given as follows:
- The degeneracies s_i insert an empty (j+1)st part
- The inner faces d_i , for 0 < i < n, join adjacent parts i, i + 1
- The outer faces d_0 , d_n delete the first, last part of the graph **G** is not a Segal space (can't reconstruct a graph just from its parts) It is a decomposition space (pictorial proof on next slide!) and its cardinality is Schmitt's coalgebra of graphs.

Simplicial structure, and the decomposition space axiom



The horizontal maps join two parts of the vertex partition. The vertical maps forget a part (and any incident edges). Pullback condition: a graph with a 3-part partition of its vertices (top right) can be reconstructed uniquely from the other data.

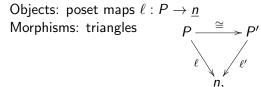
Restriction species to decomposition spaces to coalgebras

- For any $R: \mathbb{I}^{op} \to \underline{\mathbf{Grpd}}$, let $\mathbb{R} \to \mathbb{I}$ be the Grothendieck construction (of all R-structures and their R-structure preserving injections).
- Each fibre \mathbb{R}_k is the groupoid of all R-structures with an ordered partition of the underlying set into k possibly empty parts.
- ullet R defines a simplicial groupoid R which is a decomposition space
- The cardinality of $C(\mathbf{R})$ is Schmitt's coalgebra of R.
- Restriction species maps induce cULF decomposition space maps, and homomorphisms of their coalgebras, and of their cardinalities.
- Examples of restriction species are many: several classes of graphs, matroids, posets, simplicial complexes, . . .

Directed restriction species

The category $\mathbb C$ of posets and convex maps

- A poset map $f: K \to P$ is convex if for all $a, b \in K$ and $fa \le x \le fb$ in P there is a unique $k \in K$ with $a \le k \le b$ and fk = x.
- That is, f is injective, and the image $f(K) \subset P$ is a convex subposet.
- ullet We denote by ${\mathbb C}$ the category of finite posets and convex maps.
- Convex maps are stable under pullback.
- An *n*-layering is a poset map $\ell: P \to \underline{n}$, where $\underline{n} = \{1, 2, \dots, n\}$.
- The layers $P_i = \ell^{-1}(i)$ are convex subposets (and may be empty).
- Consider the groupoid $\mathbb{C}_{/n}^{iso}$ of all *n*-layerings of finite posets.



Directed restriction species

The decomposition space $\ensuremath{\mathbb{C}}$ of layered finite posets

- We can define simplicial maps between the groupoids of layered finite posets so they form a decomposition space $\mathbf{C} = \{\mathbb{C}_{/\underline{n}}^{iso}\}.$
- If $g:[n] \to [m]$ is a generic map in Δ , and if $\underline{g}:\underline{m} \to \underline{n}$ is the corresponding map in $\underline{\Delta}$, then $g^*:\mathbb{C}_{/\underline{m}}^{\mathrm{iso}} \to \mathbb{C}_{/\underline{n}}^{\mathrm{iso}}$ is postcomposition:

$$P \rightarrow \underline{m} \qquad \mapsto \qquad P \rightarrow \underline{m} \xrightarrow{\underline{g}} \underline{n}.$$

• If $f:[n] \to [m]$ is a free map, f^* is defined by pullback. e.g. $d_\top: \mathbb{C}^{\mathrm{iso}}_{/\underline{n}} \to \mathbb{C}^{\mathrm{iso}}_{/\underline{n-1}}$ takes $P \to \underline{n}$ to $P' \to \underline{n-1}$ in the pullback

Directed restriction species

- A directed restriction species is a functor $R: \mathbb{C}^{op} \to \underline{\mathbf{Grpd}}$ (that is, a right-fibration $\mathbb{R} \to \mathbb{C}$ of all R-structures on finite posets.)
- A 2-layering of a poset P defines an admissible cut of each $X \in R[P]$.
- The incidence coalgebra of R is the vector space spanned by isomorphism classes in \mathbb{R} , and one defines the comultiplication

$$\delta_2(X) = \sum X |D_c \otimes X| U_c, \qquad X \in R[P],$$

summing over all admissible cuts (D_c, U_c) of the *R*-structure *X* on *P*.

- The groupoids \mathbb{R}_n , of R-structures on posets with an n-layering, form a decomposition space \mathbf{R} with a cULF map to \mathbf{C} .
- The cardinality of $C(\mathbf{R})$ is the incidence coalgebra of R.

The decalage gives the nerve of a category

 Consider the category of finite posets, but with only the upper-(or lower-) set inclusions, rather than all convex maps

$$\mathbb{C}^{\mathsf{lower}} o \mathbb{C} \leftarrow \mathbb{C}^{\mathsf{upper}}$$

• For each directed restriction species R, we obtain categories

$$\mathbb{R}^{\mathsf{lower}} := \mathbb{C}^{\mathsf{lower}} \times_{\mathbb{C}^{\mathsf{iso}}} \mathbb{R}^{\mathsf{iso}} \qquad \qquad \mathbb{R}^{\mathsf{upper}} := \mathbb{C}^{\mathsf{upper}} \times_{\mathbb{C}^{\mathsf{iso}}} \mathbb{R}^{\mathsf{iso}}$$

- of R-structures and their lower-set and upper-set inclusions.
- There are natural (levelwise) equivalences of simplicial groupooids

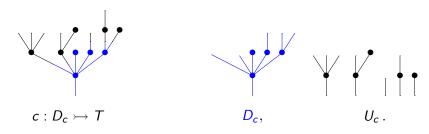
$$\mathsf{Dec}_{\perp}\,\mathsf{R}\simeq \mathsf{N}\mathbb{R}^{\mathsf{lower}}\qquad \qquad \mathsf{Dec}_{\top}\,\mathsf{R}\simeq \mathsf{N}(\mathbb{R}^{\mathsf{upper}})^{\mathsf{op}}$$

Monoidal (directed) restriction species

- ullet The categories ${\mathbb I}$ and ${\mathbb C}$ are symmetric monoidal under disjoint union.
- A monoidal (directed) restriction species is a (directed) restriction species in which $\mathbb R$ has a monoidal structure and the map $\mathbb R \to \mathbb I$ (or $\mathbb R \to \mathbb C$) is strong monoidal.
- The functor from restriction species (or from directed restriction speacies) to decomposition spaces extends to a functor from monoidal (directed) restriction species and their morphisms, to monoidal decomposition spaces and cULF monoidal functors.
- It follows if a (directed) restriction species is monoidal, the associated incidence coalgebra becomes a bialgebra.
- As $\mathbb{R} \to \mathbb{C}$ is monoidal, the incidence bialgebra of a directed restriction species \mathbb{R} comes with a bialgebra homomorphism to the incidence bialgebra of \mathbb{C} .

Example: The Connes-Kreimer bialgebra

See also: I. Gálvez, J. Kock, A. Tonks, *Groupoids and Faà di Bruno formulae for Green functions in bialgebras of trees.* Advances in Mathematics 254 (2014) 79-117



- A bialgebra studied by Dür (1986), and also by Butcher (1972).
- It has basis the isomorphism classes of forests, with multiplication given by disjoint union of forests, and comultiplication

$$\begin{array}{cccc} \delta_2: \mathscr{B} & \longrightarrow & \mathscr{B} \otimes \mathscr{B} \\ & \mathcal{T} & \mapsto & \sum_c D_c \otimes U_c, \end{array}$$

where the sum is over all admissible cuts of T.

Cancellation

Often a more economical Möbius function can be found for a decomposition space X, and be exploited to yield more economical formulae for any decomposition space with a cULF functor to X.

Lemma

Suppose that for the complete decomposition space X we have found

$$\zeta * \Psi_0 = \zeta * \Psi_1 + \epsilon.$$

Then for every decomposition space cULF over X, say $f: Y \to X$,

$$\zeta * f^* \Psi_0 = \zeta * f^* \Psi_1 + \epsilon$$

is a Möbius inversion formula for Y.

This happens because convolution, ϵ and ζ are all preserved under precomposition with cULF maps.

Decomposition spaces over **B**

If a decomposition space X admits a cULF functor $\ell:X\to \mathbf{B}$ (which may be thought of as a 'length function with symmetries') then at the numerical level and at the objective level we can pull back the economical Möbius 'functor' $\mu(n)=(-1)^n$ that exists for \mathbf{B} , yielding the numerical Möbius function on X

$$\mu(f) = (-1)^{\ell(f)}.$$

An example of this is the coalgebra of graphs of Schmitt: the functor from the decomposition space of graphs to ${\bf B}$ which to a graph associates its vertex set is cULF.

Hence the Möbius function for this decomposition space is

$$\mu(G) = (-1)^{\#V(G)}.$$

In fact this argument works for any restriction species.

Thank you for your attention

Thank you for your attention

Cancelation

The simplicial category

• Denote by Δ the category whose objects [n], $n \ge 0$, are finite nonempty standard ordinals (with n + 1 elements!)

$$[n] := \{0, 1, \cdots, n\}, \qquad n \ge 0.$$

and whose morphisms are the order-preserving maps between them.

• Among these maps one considers the following generators: for $n \ge 0$, $i \in [n]$,

$$\partial_n^i:[n-1]\to[n]$$

is the unique nondecreasing injection that skips the value i, and

$$\sigma_n^i: [n+1] \to [n]$$

is the unique nondecreasing surjection that repeats the value i.

• If there is no ambiguity, one writes ∂^i and σ^i .

Simplicial groupoids

A simplicial groupoid is a functor

$$X: \Delta^{\mathrm{op}} \to \mathsf{Groupoids}.$$

One writes

$$X_n$$
 for $X([n])$
 d_i for $X(\partial^i): X_n \to X_{n-1}, \quad i = 0, \dots, n,$
 s_i for $X(\sigma^i): X_n \to X_{n+1}, \quad i = 0, \dots, n,$

• A simplicial map $X \to Y$ is a natural transformation: a family of maps $(X_n \to Y_n)_{n \ge 0}$ commuting with face and degeneracy maps.

Infinity groupoids

Joyal: Quasi-categories and Kan complexes (2002), Lurie: Higher Topos Theory (2009)

- We often use simplicial ∞-groupoids instead of simplicial groupoids.
- One model for the notion of ∞-groupoid is that of Kan complex.
- The corresponding model for the notion of ∞-category is that of weak Kan complex, termed quasi-category by Joyal.
- Recall that the representable simplicial set $\Delta[n]$ is the simplicial set defined by $\Delta[n] := \operatorname{Hom}_{\Delta}(-, [n]) : \Delta^{\operatorname{op}} \to \operatorname{Set}$
 - and that its k-th horn $\Lambda^k[n]$ is the largest simplicial subset of $\mathbb{A}[n]$ that does not contain either $1_{[n]}:[n]\to[n]$ or $\partial^k:[n-1]\to[n]$.
- A weak Kan complex is a simplicial set $X: \mathbb{\Delta}^{op} \to \mathsf{Set}$ with the Kan extension property along horn inclusions $\jmath_k^n : \Lambda^k[n] \to \mathbb{\Delta}[n]$ for 0 < k < n, while a Kan complex has this extension property for all 0 < k < n.

$$\Lambda^{k}[n] \xrightarrow{\forall} X$$

$$I_{k}^{n} \downarrow \qquad \exists$$